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ABSTRACT 

Different possibilities for the enhancement of convergence rates in eigenfunction expansions are 
investigated in the realm of integral transform solutions for partial differential equations. A representative 
parabolic problem is chosen to illustrate two schemes and their combinations; a filtering technique and an 
integral balance approach. Numerical results are presented to confirm the relative merits in each proposed 
procedure. 
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NOMENCLATURE 

A = Cross-sectional area T = Temperature of the fin 
Ar = A reference cross-sectional area Tr = A reference temperature 
b = Decay constant for the exponential functional form T∞ = Temperature of the surrounding fluid 

adopted as the fin's base temperature x = Position 
h = Heat transfer coefficient between the lateral surface X = Dimensionless position as defined by Equation (2a) 

and the fluid Xl = Dimensionless length of the fin 
hr = A reference heat transfer coefficient W = Dimensionless parameter defined by Equation (2g) 
k = Thermal conductivity of the fin material 
K = Dimensionless area as defined by Equation (2b) 
Lr = A reference length Greek symbols 
M = Dimensionless parameter defined by Equation (2e) a = diffusivity 
pr = Perimeter of the reference cross-sectional area Ar θ = dimensionless temperature as defined by Equation 
S = Lateral area of the fin (2d) 
t =Time Τ = dimensionless time as defined by Equation (2c) 

INTRODUCTION 

The Integral Transform Method, in its classical sense1,2, is a well-known analytical approach for 
the solution of certain classes of linear diffusion problems, based on expansions of the original 
potentials in terms of an associated eigenvalue problem. A major aspect in the practical 
implementation of such methodology is the eventual need for improving the convergence 
behaviour of the resulting eigenfunction expansions. Within the context of those classes of 
problems that may be handled exactly, a number of convergence acceleration schemes were 
proposed over the last few years1-4, essentially originated from the splitting-up of the original 
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partial differential system into simpler problems. However, the expressions "so developed" are 
limited to time-dependent source functions represented by exponentials and q-order polynomials, 
and the analytical involvement makes it not so practical for more general situations of arbitrary 
source functions and multidimensional and/or non-linear problems. 

Motivated by the recent developments in the so-called Generalized Integral Transform 
Technique (GITT), reviewed in references 5 to 7, for the hybrid numerical-analytical solution of 
non-linear diffusion and convection-diffusion problems, an alternative approach based on integral 
balances was proposed5-9, and different filtering schemes were employed throughout the sparse 
literature on this methodology5,7,10,11. The aim was to provide simpler convergence enhancement 
procedures, in order to maintain the applicability of the formal solution approach into the widest 
possible range of posed problems in heat and fluid flow, and to within a mild degree of analytical 
involvement, for compatibility with the development of automatic solvers for partial differential 
equations in such fields. 

The present work brings a systematic description and critical comparison of such alternative 
approaches, enriched by their combinations as one single scheme. A typical heat diffusion 
problem; the transient temperature profile in a fin, is selected to illustrate the different 
possibilities of applying the improved eigenfunction expansions, and numerical results are 
presented to investigate the relative merits in each proposed scheme. 

PROBLEM FORMULATION 

A representative heat conduction problem is selected for illustration purposes, related to the 
determination of transient temperature distributions along fins of constant profile. 

The generalized transient fin equation can be stated, in dimensionless form, as5 

where the basic assumptions behind such formulation include the usual hypothesis of a uniform 
temperature in any cross-section (one dimensional problem), homogeneous material, constant 
thermal conductivity, no energy sources or sinks within the fin, and uniform temperature of the 
surrounding fluid2. 

The various dimensionless groups are defined as5: 

For a rectangular shaped fin and constant heat transfer coefficient (h(x,t) = hr), K(X) = W(X,τ) = 1 
as shown in Reference 2, reducing equation (1) to 

and the adopted initial and boundary conditions are given, respectively, by 

neglecting heat transfer at the fin's tip for the present case. 
As an initial condition, equation (3b), the steady-state temperature profile for constant 

temperature at the fin's base was adopted, i.e., θP(X) is the solution of the following problem: 
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which furnishes 
θp (X) = cosh(MZ) - tanh(M)sinh(MT). (5) 

The functional form for the time varying fin's base temperature was chosen as 
θb(τ) = e-bτ, b > 0 (6) 

representing, for instance, the base's temperature decay following a shut-down operation of the 
associated heat transfer equipment. 

FORMAL SOLUTION 

Following the formalism in the classical integral transform technique1,2,5, the associated 
eigenvalue problem is obtained as 

yielding, 

This auxiliary problem allows for the definition of the integral transform pair: 

The remaining analysis is well documented in references 1, 2 and 5 and should not be repeated 
here. The basic idea consists of transforming the original partial differential equation system 
(equation (3)) into an infinite system of decoupled ordinary differential equations, i.e., 
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which is readily solved to furnish 

Then, the formal solution is directly obtained from the equation 9b as 

where the transformed initial condition, fi, is given by 

and gi, originating from the non-homogeneity at the boundaries, is obtained as 

Substituting equations (11b) and (11c) into equation (11a) and evaluating the integral, one obtains 
for the adopted form of θb (equation 6) the following working expression 

As can be seen, the solution, equation (12) does not reproduce the boundary condition at X = 0, 
since equation (7b) is not compatible with equation (3c). This fact markedly affects the 
convergence behaviour of the formal solution, particularly at points approaching X = 0, and for 
any practical purpose this expression, (equation (12)) should be avoided, and convergence 
enhancement schemes must be invoked. 

FILTERING SCHEME 

The filtering approach to enhance the convergence of eigenfunction expansions is based on the 
idea of eliminating, or at least reducing, the influence of the problem source terms (both in the 
equation itself and the associated boundary conditions). Such source terms act in the sense of 
deviating the resulting formal solution from the well-behaved exponentially decaying expressions 
for a fully homogeneous problem, bringing up undesirable characteristics for the series 
convergence behaviour. Therefore, extracting simpler formulations from the original problem that 
contain, at least in part, some information represented by these source terms, may yield improved 
solutions obtained from the remaining partial differential formulation that results from 
application of the filter, providing a net weakening effect on the source terms (or their complete 
remotion from the problem). 

For the present application, the following filtering strategy is proposed: 
Θ(X, Τ) = ΘS(X | Τ) + Θt(X, Τ) (13) 

where the filtering solution, θs(X|τ), is obtained from the following simpler problem (Τ is now 
regarded as a parameter), 

From substitution of the proposed expression, equation (13), into the original system, equation 
(3), the new task is then to solve the following transient problem for θt(X, τ): 
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For this new problem, the boundary condition source term has been completely eliminated, while 
the equation source term has been at least filtered to some extent. 

Problem (14) is similar to problem (4) and is easily solved as 
θS(X |τ) = θ6(τ)[cosh(MX) - tanh(M)sinh(MX)]. (16) 

Again, problem (15) is solved through the classical integral transform technique. The eigenvalue 
problem is the same as in equation (3), generating the same eigenfunctions, eigenvalues and 
norms, equation (8a-c). The general solution, equation (11a), is again applied and the transformed 
initial condition, fi, is obtained from: 

and gi, now the transformed filtered source term (-∂θs/∂τ) in equation (15a), is evaluated as 

Then, formula (11a) and equation (13) provide the final solution from this filtering approach as: 

θ(Χ, τ) = e-bτ[cosh(MX) - tanh(M)sinh(MX)] 

Thus, solution (18) now satisfies the boundary condition at X = 0 identically, and this expression 
is, therefore, expected to present improved convergence behaviour over the formal solution, 
equation (12). The filtering scheme may proceed in the direction of progressively decreasing the 
relative importance of the remaining source terms that could not be eliminated through the last 
filter employed. 

Following this reasoning, one can propose a double filter to the present problem, by letting 
θ,(Χ, τ) = θss(Χ|τ) + θtt(Χ, τ) (19) 

where θss(Χ|τ) is obtained from the simpler problem below, that incorporates the remaining 
equation source term, 

and θtt(X,τ) comes from the twice filtered partial differential system as follows: 
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where the solution of problem (20) yields: 

In a similar manner, as in the previous single filter scheme, one can obtain the integral transform 
solution for equations (21), and compose the final solution for the double filtering scheme as: 

θ(Χ, τ) = e-bτ [cosh(MX) - tanh(M)sinh(MX)] 

Additional filters can be superimposed on the present solution, at the cost of increasing analytical 
involvement, and there is a compromise associated with the relative gain in convergence rates that 
might result from such successive filtering, which can be better envisaged within the results 
section. Symbolic manipulation packages can be of particular interest in the realm of applications, 
once further filtering is decided on. 

INTEGRAL BALANCE SCHEME 

This acceleration technique is based on direct integration of the original partial differential 
equation over the whole domain and manipulation of the related boundary conditions and is fully 
described in references 5, 8 and 9. The aim is explicitly to extract and account for the equation 
and boundary source terms, again providing, to a certain extent, a convergence enhancement 
effect. 

For the present application, equation. (3a) is now operated on with ∫X
1dX, to yield, after 

recalling the inversion formula, equation (9b), and the ordinary differential system, equation 
(10a), 

Further integration of equation (24) with and the use of equations (3c-d) yields 
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and after evaluation of the above integral and substitution for the transformed potentials, equation 
(10c), one obtains, 

Again, the boundary source term is explicitly accounted for, and the boundary conditions are 
identically satisfied, offering an expression with expected convergence improvement over the 
formal solution. 

COMBINED FILTERING AND INTEGRAL BALANCE SCHEME 

As an additional possibility to be investigated, the integral balance scheme will be employed right 
after the first filter application, i.e. on problem (15), in order to illustrate the relative merits of a 
combined procedure with the two schemes. 

Following the same basic steps as in the previous section, one finds the final enhanced 
expression: 

RESULT AND DISCUSSION 

The four proposed improved expressions, equations (18), (23), (26) and (27), together with the 
plain formal solution, equation (12), are now critically compared against each other. As a 
reference solution, the splitting-up procedure1-4, as described in the Appendix, offers an 
essentially ideal convergence behaviour for the present situation and a comparative pattern for the 
proposed solutions. It should be remembered, though, the severe limitations on the extension of 
the splitting-up approach to more involved problems. 

As can be observed, solution (11a) may be interpreted as the sum of the homogeneous solution, 
as obtained through the separation of variables method, and a particular solution due to the non-
homogeneities. Thus, the classical integral transform method may be regarded, roughly speaking, 
as an automatic technique to determine the particular solution of a partial differential equation. 
This particular solution, in a series form, does not have the desirable exponential convergence 
rate, and so, it may experience slow convergence. Therefore, all the convergence acceleration 
efforts are made in order to increment the rates of convergence for this series, and the schemes 
presented here are means of extracting partial sums of the series, since the splitting-up procedure, 
which allows for a closed form expression, is limited to very specific forms of time-dependent 
source functions. Another possible way, not investigated here, is to employ special techniques to 
directly enhance the summation itself, such as Aitken-Shanks transformations12, Lanczos σ 
factors13 or manipulations of the series14. 

In order to compare the different acceleration approaches, a computer program was developed 
to evaluate expressions (12), (18), (23), (26) and (27). It is of interest to study the influence, on 
the convergence rates, of the parameter M, the position X, the time τ and the decay constant b. 

Figure 1 shows the convergence behaviour of the four acceleration approaches developed here 
against the formal solution, as a function of the parameter M. One can observe that the delay in 
convergence generally increases as Μ is also increased, especially for the integral balance 
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approach. Except for this integral balance approach, the acceleration schemes present excellent 
performance through the range of Μ shown in Figure 1, the best technique being the double 
filtering. The worse behaviour of the integral balance can be explained through the fact that this 
approach makes explicit the boundary condition at X = 0 and, in the case of larger values of M, this 
condition has less effect on the temperatures in positions not so close to this boundary. Therefore, 
the integral balance is a convergence acceleration scheme to be recommended when the non-
homogeneous boundary condition has a remarkable effect (as for Μ < 1, in the present situation) 
on the solution over the whole domain. 

In practical applications, Μ is generally less than one and Figure 1 shows that, in this case, 
"single filtering" is equivalent to "integral balance" while "double filtering" is equivalent to 
"combined filtering and integral balance". This can be observed from the two pairs of expressions, 
equations (18) and (26) and equations (23) and (27). Although formally different, the numerical 
values for each expression in the same pair above, are closer for Μ < 1. Then, only the filtering 
approaches will be considered in the analysis to follow. 

Figure 2 shows the convergence process as the number of terms Ν in the series is increased. The 
effectiveness of the filtering techniques is quite noticeable from this plot. One may argue about 
the relative advantage brought up by the second filter, since the analytical development is more 
involved in this case. It is important to notice that the fin problem studied here can be used as a 
filter itself within another integral transform solution for a more complicated problem (e.g., a 
radiating fin, as an example of non-linear problem). In such circumstances, achieving 
convergence with somewhat fewer terms may result in a marked difference in computational 
costs. 

Figure 3 brings the influence of the position within the medium, X, on the convergence 
behaviour. For the formal solution, as noted earlier, the boundary condition at X = 0 is not satisfied 
and this disturbs the convergence rates at the remaining positions. The behaviour of the 
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CONCLUSIONS 

Many partial differential systems in the realm of applications have source terms formulations that 
disable the direct application of the well-known and effective splitting-up procedure, when 
applying the Integral Transform Method. On the other hand, the quite flexible filtering technique 
has presented an excellent performance, enhancing the convergence rates of the resulting 
eigenfunction expansions. Furthermore, this technique is not limited to linear problems that can 
be handled exactly by the classical Integral Transform Method, and may be used associated with 
the generalized approach (GITT) in the solution of more involved non-linear problems. Filters can 
be superimposed, yielding successive computational performance improvements, at the expense 
of increased analytical work. This may be particularly suitable for non-linear problems with 
considerable computational cost. 

As shown by the present work, the integral balance approach is useful only when the non-
homogeneous boundary condition represents a significant part of the final solution over the whole 
domain. 

Although a general and universal filter is that one which incorporates, in full, the influence of 
the equation and boundary conditions source terms, with a reduced number of independent 
variables, practical considerations may lead us in proposing simplified filtering solutions, which 
only partially reproduce the information carried by the original source terms, but to a sufficient 
extent so as to enhance convergence rates and, at the same time, keep the overall analytical 
involvement to a reasonable level. 
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APPENDIX: SPLITTING-UP PROCEDURE 

The reader is referred to Reference 2 for the details on the splitting-up scheme. For the present 
case, problem (3) splits into 

θ(Χ, τ) = θφ(Χ) e-bτ + θ,(Χ, τ) (Α1) 
where θφ(Χ) is obtained from the following problem 
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which furnishes 

or 

Substituting equation (A1) into problem (3), one finds that θ,(X, τ) may be obtained from the 
following system 

which is readily solved through the classical integral transform technique, to yield 

Then, the final solution is obtained, for each case (M2 < b or M2 >b),by combining equations (A5) 
and equations (A3) as required by equation (A1). For M2 = b, both solutions in equations (A3) can 
be used. 

Comparison of equation (12) with equation (A5) shows that the splitting-up procedure gives 
the summation of the series related to the particular solution of the original partial differential 
equation in a closed form, providing the desirable exponential convergence rate, represented by 
the term e-μ2

i
t. 


